5,412 research outputs found

    Fractional cable models for spiny neuronal dendrites

    Get PDF
    Cable equations with fractional order temporal operators are introduced to model electrotonic properties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fractional order operators to model the anomalous subdiffusion that arises from trapping properties of dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along dendrites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer times. Calibration and validation of the models should provide new insight into the functional implications of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders

    Influence of a mutltistrand cable design on its quench development process and stability

    Get PDF
    The quench development process was studied with two six-strand superconducting cable samples with insulated strands and different cabling design. One sample was the traditional ‘six-around-one’ cable, the other was of the ‘round-braid’ type. Quench was initiated by a heating pulse applied to a single strand. A significant difference was observed in the current redistribution among strands due to the different cabling designs. It has an important influence on the stability of multistrand cables. A new concept of the ‘single-strand stability’ was proposed and corresponding stability criteria were offered. A possible way to improve cable stability by using special cabling design is discussed

    Optimization of a charge-state analyzer for ECRIS beams

    Full text link
    A detailed experimental and simulation study of the extraction of a 24 keV He-ion beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 pi mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16 to 45%

    Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium

    Full text link
    We investigate the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. This work is a straightforward extension of Ostriker (1999) who studied the case of a straight-line trajectory. The circular orbit causes the bending of the wake in the background medium along the orbit, forming a long trailing tail. The wake distribution is thus asymmetric, giving rise to the drag forces in both opposite (azimuthal) and lateral (radial) directions to the motion of the perturber, although the latter does not contribute to orbital decay much. For subsonic motion, the density wake with a weak tail is simply a curved version of that in Ostriker and does not exhibit the front-back symmetry. The resulting drag force in the opposite direction is remarkably similar to the finite-time, linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, and develops a very pronounced tail. The supersonic tail surrounds the perturber in a trailing spiral fashion, enhancing the perturbed density at the back as well as far front of the perturber. We provide the fitting formulae for the drag forces as functions of the Mach number, whose azimuthal part is surprisingly in good agreement with the Ostriker's formula, provided Vp t=2 Rp, where Vp and Rp are the velocity and orbital radius of the perturber, respectively.Comment: 28 pages, 9 figures, accepted for publication in Astrophysical Journa

    Do self-talk phrases affect behavior in ultimatum games?

    Get PDF
    The current study investigates whether self-talk phrases can influence behavior in Ultimatum Games. In our three self-talk treatments, participants were instructed to tell themselves (i) to keep their own interests in mind, (ii) to also think of the other person, or (iii) to take some time to contemplate their decision. We investigate how such so-called experimenter-determined strategic self-talk phrases affect behavior and emotions in comparison to a control treatment without instructed self-talk. The results demonstrate that other-focused self-talk can nudge proposers towards fair behavior, as offers were higher in this group than in the other conditions. For responders, self-talk tended to increase acceptance rates of unfair offers as compared to the condition without self-talk. This effect is significant for both other-focused and contemplation-inducing self-talk but not for self-focused self-talk. In the self-focused condition, responders were most dissatisfied with unfair offers. These findings suggest that use of self-talk can increase acceptance rates in responders, and that focusing on personal interests can undermine this effect as it negatively impacts the responders’ emotional experience. In sum, our study shows that strategic self-talk interventions can be used to affect behavior in bargaining situations

    Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production

    Get PDF
    Š 2018 The Author(s). Published by Elsevier Inc.Diabetes is a bihormonal disorder resulting from combined insulin and glucagon secretion defects. Mice lacking fumarase (Fh1) in their β cells (Fh1βKO mice) develop progressive hyperglycemia and dysregulated glucagon secretion similar to that seen in diabetic patients (too much at high glucose and too little at low glucose). The glucagon secretion defects are corrected by low concentrations of tolbutamide and prevented by the sodium-glucose transport (SGLT) inhibitor phlorizin. These data link hyperglycemia, intracellular Na+ accumulation, and acidification to impaired mitochondrial metabolism, reduced ATP production, and dysregulated glucagon secretion. Protein succination, reflecting reduced activity of fumarase, is observed in ι cells from hyperglycemic Fh1βKO and β-V59M gain-of-function KATP channel mice, diabetic Goto-Kakizaki rats, and patients with type 2 diabetes. Succination is also observed in renal tubular cells and cardiomyocytes from hyperglycemic Fh1βKO mice, suggesting that the model can be extended to other SGLT-expressing cells and may explain part of the spectrum of diabetic complications.Peer reviewe
    • …
    corecore